Math 10260 Exam 2 Solutions - Fall 2012.

1. This series is not initially a geometric series, but if we write

$$
\sum_{n=0}^{\infty} \frac{2^{n}+(-1)^{n}}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)^{n}
$$

then the two terms on the right hand side are both geometric series with the form $a \sum_{n=0}^{\infty} r^{n}$ with $|r|<1$ (and $a=1$), and so they both converge to $\frac{a}{1-r}$. Therefore

$$
\sum_{n=0}^{\infty} \frac{2^{n}+(-1)^{n}}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)^{n}=\frac{1}{1-(2 / 3)}+\frac{1}{1-(-1 / 3)}=15 / 4
$$

2. Since we're asked to find a sum and it doesn't look like this is going to be geometric, we hope that it is a telescoping series. We compute the partial sum s_{M} :

$$
\begin{aligned}
s_{M} & =\sum_{n=1}^{M}\left[\frac{5 n}{n+3}-\frac{5(n+1)}{n+4}\right] \\
& =\left[\frac{5}{4}-\frac{10}{5}\right]+\left[\frac{10}{5}-\frac{15}{6}\right]+\left[\frac{15}{6}-\frac{20}{7}\right]+\cdots+\left[\frac{5 M}{M+3}-\frac{5(M+1)}{M+4}\right] \\
& =\frac{5}{4}-\frac{5(M+1)}{M+4}
\end{aligned}
$$

since the terms telescope. Then since a series converges to L if the sequence of partial sums converge to L, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left[\frac{5 n}{n+3}-\frac{5(n+1)}{n+4}\right] & =\lim _{M \rightarrow \infty} s_{M}=\lim _{M \rightarrow \infty} \sum_{n=1}^{M}\left[\frac{5 n}{n+3}-\frac{5(n+1)}{n+4}\right] \\
& =\lim _{M \rightarrow \infty} \frac{5}{4}-\frac{5(M+1)}{M+4} \\
& =\frac{5}{4}-\lim _{M \rightarrow \infty} \frac{5+1 / M}{1+4 / M}=\frac{5}{4}-5=\frac{-15}{4}
\end{aligned}
$$

3. (I): This series has positive terms, and so we do a limit comparison test with $\sum \frac{1}{n^{2}}$.

$$
\lim _{n \rightarrow \infty} \frac{\frac{3 n^{3}+2 n+1}{2 n^{5}+n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{3 n^{5}+2 n^{3}+n^{2}}{2 n^{5}+n^{2}}=\lim _{n \rightarrow \infty} \frac{3+2 / n^{2}+1 / n^{3}}{2+1 / n^{3}}=\frac{3}{2}
$$

Since this limit is a finite number that is bigger than zero and $\sum \frac{1}{n^{2}}$ converges (p-series with $p=2$), the series in (I) converges.
(II): Notice that the terms being added in the series don't go to 0 :

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n} \stackrel{\text { L'Hospital }}{=} \lim \frac{1}{1 / n}=\infty .
$$

Therefore, (II) diverges by the test for divergence.
(III): Ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+2}}{3((n+1)!)}}{\frac{2^{n+1}}{3(n!)}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+2}}{3((n+1)!)} \cdot \frac{3(n!)}{2^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2}{n+1}\right|=0<1
$$

so the series converges by the ratio test.
4. The series is bounded as follows

$$
\sum_{n=1}^{\infty} \frac{\sin \left(n^{2}\right)}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{\left|\sin \left(n^{2}\right)\right|}{n^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

The last series above converges, as it is a p-series with $p=2$. Therefore, by the comparison test this series is absolutely convergent.
5. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$ is conditionally convergent. Observe, that
(1) It is alternating.
(2) The $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n+1}}=0$.
(3) We have the absolute value of the sequence defining the series is decreasing:

$$
\frac{1}{\sqrt{(n+1)+1}}=\frac{1}{\sqrt{n+2}} \leq \frac{1}{\sqrt{n+1}}
$$

However, $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n+1}}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$, which is divergent by the Limit Comparison Test with $b_{n}=1 / \sqrt{n}$.
6. Using the hint, we write

$$
\frac{2 x}{\left(1-x^{2}\right)^{2}}=\frac{d}{d x}\left[\frac{1}{1-x^{2}}\right]
$$

We notice that the series on the right hand side is the geometric series with $r=x^{2}$ therefore, we have

$$
\frac{2 x}{\left(1-x^{2}\right)^{2}}=\frac{d}{d x}\left[\sum_{n=0}^{\infty} x^{2 n}\right]=\sum_{n=1}^{\infty} 2 n x^{2 n-1}
$$

7. We know that e^{x} has power series representation $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. So we substitue x for $\frac{3}{5}$ and we get $e^{3 / 5}=\sum_{n=0}^{\infty} \frac{\left(\frac{3}{5}\right)^{n}}{n!}$. So $2 e^{3 / 5}=2 \sum_{n=0}^{\infty} \frac{\left(\frac{3}{5}^{n}\right)}{n!}=\sum_{n=0}^{\infty} \frac{2 \cdot 3^{n}}{5^{n}(n!)}$.
8. The fouth order Taylor polynomial is given by $\sum_{n=0}^{4} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. So we know the $(x-3)^{2}$ coefficient must be $\frac{f^{(2)}(3)}{2!}$. Thus:

$$
\frac{f^{(2)}(3)}{2!}=10 \Longrightarrow f^{(2)}(3)=10 \cdot 2!=20
$$

9. We use the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{2 x^{n+1}}{3^{n+1}(n+1)^{2}} \frac{3^{n} n^{2}}{2 x^{n}}\right|=\lim _{n \rightarrow \text { infty }}\left|\frac{x n^{2}}{3(n+1)^{2}}\right|=\left|\frac{x}{3}\right| \lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\left|\frac{x}{3}\right|
$$

The ratio test tells us this series converges when the limit we just calculated is less than 1 . So we have that $\left|\frac{x}{3}\right|<1 \Longrightarrow|x|<3$. Thus $R=3$.
10. The power series of $\sin (x)$ is $\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{5!} x^{5}-\cdots$, and therefore the power series of $\sin \left(x^{10}\right)$ is $x^{10}-\frac{1}{6} x^{30}+\frac{1}{5!} x^{50}-\cdots$. Accordingly, we are finding

$$
\lim _{x \rightarrow 0} \frac{-\frac{1}{6} x^{30}+\frac{1}{5!} x^{50}-\cdots}{x^{30}}=\lim _{x \rightarrow 0}\left(-\frac{1}{6}+\frac{1}{5!} x^{20}-\cdots\right)=-\frac{1}{6} .
$$

11. First we must verify that the test is applicable. Setting $f(x)=\frac{1}{x \ln (x)}$, the series is given by $\sum_{2}^{\infty} f(n)$. Clearly this function is continuous and positive on $[2, \infty)$, and since both x and $\ln (x)$ are increasing, $f(x)$ is decreasing. Now we need to find the improper integral $\int_{2}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x$. Letting $u=\ln (x)$ we have $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$, so that the integral becomes

$$
\int_{2}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \ln (x)} \mathrm{d} x=\lim _{t \rightarrow \infty} \int_{\ln (2)}^{\ln (t)} \frac{1}{u} \mathrm{~d} u=\lim _{t \rightarrow \infty} \ln (u) \ln _{\ln (t)}^{\ln (t)}=\lim _{t \rightarrow \infty} \ln (\ln (t))-\ln (\ln (2))=\infty
$$

Therefore the series diverges.
12. (a) The Taylor series expansion of $\cos (x)$ is easily calculated by repeatedly differentiating $\cos (x)$, and is given by $\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{6!} x^{6}+\cdots+(-1)^{n} \frac{1}{(2 n)!} x^{2 n}+\cdots$.
(b) To find the series expansion of $\cos \left(x^{2}\right)$ we simply replace x with x^{2} to get $\cos \left(x^{2}\right)=1-\frac{1}{2} x^{4}+\frac{1}{24} x^{8}-\frac{1}{6!} x^{12}+\cdots+(-1)^{n} \frac{1}{(2 n)!} x^{4 n}+\cdots$.
(c) We now want to find the definite integral $\int_{0}^{0.1} \cos \left(x^{2}\right) \mathrm{d} x$. We do this by integrating the series term by term so that

$$
\begin{aligned}
\int_{0}^{0.1} \cos \left(x^{2}\right) \mathrm{d} x & =\int_{0}^{0.1}\left(1-\frac{x^{4}}{2}+\frac{x^{8}}{24}-\frac{x^{12}}{6!}+\cdots+(-1)^{n} \frac{x^{4 n}}{(2 n)!}+\cdots\right) \mathrm{d} x \\
& =\left.\left(x-\frac{x^{5}}{10}+\frac{x^{9}}{216}-\frac{x^{13}}{13 \cdot 6!}+\cdots+(-1)^{n} \frac{x^{4 n+1}}{(4 n+1)(2 n)!}+\cdots\right)\right|_{0} ^{0.1} \\
& =0.1-\frac{(0.1)^{5}}{10}+\frac{(0.1)^{9}}{216}-\frac{(0.1)^{1} 3}{13 \cdot 6!}+\cdots+(-1)^{n} \frac{(0.1)^{4 n+1}}{(4 n+1)(2 n)!}+\cdots
\end{aligned}
$$

(d) Because this is a decreasing alternating series, we can estimate the integral to within 10^{-8} by finding the first term which is smaller than 10^{-8}, and only summing the terms which precede it. This is the third term, $\frac{(0.1)^{9}}{216}$. Our estimate is $0.1-\frac{(0.1)^{5}}{10}=.099999$.
13. To find the radius of convergence, lets use the Ratio Test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-4)^{n+1}}{2^{(n+1)}((n+1)+1)} \cdot \frac{2^{n}(n+1)}{(-1)^{n}(x-4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-4)}{2} \cdot \frac{n+1}{n+2}\right|=\frac{|x-4|}{2}
$$

By Ratio Test, the series will converge if $\frac{|x-4|}{2}<1$, this is if $|x-4|<2$. Hence, the radius of convergence is 2 .
Now we need to verify convergence in the endpoints $x=2$ and $x=6$. When
$x=2, \sum_{n=0}^{\infty} \frac{(-1)^{n}(2-4)^{n}}{2^{n}(n+1)}=\sum_{n=0}^{\infty} \frac{1}{(n+1)}$, which diverges by the Integral Test. At $x=6$,
$\sum_{n=0}^{\infty} \frac{(-1)^{n}(6-4)^{n}}{2^{n}(n+1)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)}$, which converges by the Alternating Series Test. Hence, the interval of convergence is $(2,6]$.

